3,168 research outputs found

    Mean and Extreme Radio Properties of Quasars and the Origin of Radio Emission

    Full text link
    We investigate the evolution of both the radio-loud fraction (RLF) and (using stacking analysis) the mean radio-loudness of quasars. We consider how these values evolve as a function of redshift and luminosity, black hole (BH) mass and accretion rate, and parameters related to the dominance of a wind in the broad emission line region. We match the FIRST source catalog to samples of luminous quasars (both spectroscopic and photometric), primarily from the Sloan Digital Sky Survey. After accounting for catastrophic errors in BH mass estimates at high-redshift, we find that both the RLF and the mean radio luminosity increase for increasing BH mass and decreasing accretion rate. Similarly both the RLF and mean radio loudness increase for quasars which are argued to have weaker radiation line driven wind components of the broad emission line region. In agreement with past work, we find that the RLF increases with increasing luminosity and decreasing redshift while the mean radio-loudness evolves in the exact opposite manner. This difference in behavior between the mean radio-loudness and the RLF in L-z may indicate selection effects that bias our understanding of the evolution of the RLF; deeper surveys in the optical and radio are needed to resolve this discrepancy. Finally, we argue that radio-loud (RL) and radio-quiet (RQ) quasars may be parallel sequences but where only RQ quasars at one extreme of the distribution are likely to become RL, possibly through slight differences in spin and/or merger history.Comment: 55 pages, 28 figures, accepted to A

    Conference Summary: AGN Physics with the Sloan Digital Sky Survey

    Full text link
    The ``AGN Physics with the Sloan Digital Sky Survey'' conference was held at Princeton University in July 2003 to bring together groups working inside and outside of the SDSS collaboration at radio through X-ray wavelengths to discuss the common goal of better understanding the physics of Active Galactic Nuclei (AGN). Although we still do not have a full understanding of AGN, much progress has been made in recent years. In this conference summary, we concentrate on those topics discussed at the meeting where we believe that there has been significant change or where there is a new standard of comparison, as well as on important new trends in AGN research.Comment: 4 pages, no figures; text now fully matches published versio

    The Obscured Fraction of AGN in the XMM-COSMOS Survey: A Spectral Energy Distribution Perspective

    Get PDF
    The fraction of AGN luminosity obscured by dust and re-emitted in the mid-IR is critical for understanding AGN evolution, unification, and parsec-scale AGN physics. For unobscured (Type-1) AGN, where we have a direct view of the accretion disk, the dust covering factor can be measured by computing the ratio of re-processed mid-IR emission to intrinsic nuclear bolometric luminosity. We use this technique to estimate the obscured AGN fraction as a function of luminosity and redshift for 513 Type-1 AGN from the XMM-COSMOS survey. The re-processed and intrinsic luminosities are computed by fitting the 18-band COSMOS photometry with a custom SED-fitting code, which jointly models emission from: hot-dust in the AGN torus, the accretion disk, and the host-galaxy. We find a relatively shallow decrease of the luminosity ratio as a function of Lbol, which we interpret as a corresponding decrease in the obscured fraction. In the context of the receding torus model, where dust sublimation reduces the covering factor of more luminous AGN, our measurements require a torus height which increases with luminosity as h ~ Lbol^{0.3-0.4}. Our obscured fraction-luminosity relation agrees with determinations from SDSS censuses of Type-1 and Type-2 quasars, and favors a torus optically thin to mid-IR radiation. We find a much weaker dependence of obscured fraction on 2-10 keV luminosity than previous determinations from X-ray surveys, and argue that X-ray surveys miss a significant population of highly obscured Compton-thick AGN. Our analysis shows no clear evidence for evolution of obscured fraction with redshift.Comment: 33 pages, 24 figures, ApJ accepte
    corecore